數學小論文

    時間:2024-09-30 16:37:51 數學畢業論文 我要投稿

    數學小論文范例

      1證明一個三角形是直角三角形

    數學小論文范例

      2用于直角三角形中的相關計算

      3有利于你記住余弦定理,它是余弦定理的一種特殊情況。中國最早的一部數學著作——《周髀算經》的開頭,記載著一段周公向商高請教數學知識的對話:

      周公問:“我聽說您對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關于天地得到數據呢?”

      商高回答說:“數的產生來源于對方和圓這些形體餓認識。其中有一條原理:當直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時候,那么它的斜邊‘弦’就必定是5。這個原理是大禹在治水的時候就總結出來的呵。”

      從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經發現并應用勾股定理這一重要懂得數學原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方

      用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:

      勾2+股2=弦2

      亦即:

      a2+b2=c2

      勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家兼哲學家畢達哥拉斯于公元前550年首先發現的。其實,我國古代得到人民對這一數學定理的發現和應用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那么周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例(32+42=52)。所以現在數學界把它稱為勾股定理,應該是非常恰當的。

      在稍后一點的《九章算術一書》中,勾股定理得到了更加規范的一般性表達。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進行開方,便可以得到弦。”把這段話列成算式,即為:

      弦=(勾2+股2)(1/2)

      即:

      c=(a2+b2)(1/2)

      定理:

      如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a^平方+b^平方=c^平方;即直角三角形兩直角邊的平方和等于斜邊的平方。

      如果三角形的三條邊a,b,c滿足a^2+b^2=c^2,如:一條直角邊是3,一條直角邊是四,斜邊就是3*3+4*4=X*X,X=5。那么這個三角形是直角三角形。(稱勾股定理的逆定理)

      來源:

      畢達哥拉斯樹是一個基本的幾何定理,傳統上認為是由古希臘的畢達哥拉斯所證明。據說畢達哥拉斯證明了這個定理后,即斬了百頭牛作慶祝,因此又稱“百牛定理”。在中國,《周髀算經》記載了勾股定理的一個特例,相傳是在商代由商高發現,故又有稱之為商高定理;三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,作為一個證明。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。我國古代把直角三角形中較短得直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦。

    【數學小論文】相關文章:

    數學小論文09-23

    (精選)數學的小論文07-14

    數學的小論文06-18

    數學小論文05-24

    大學數學小論文10-22

    小升初數學小論文10-18

    數學與生活小論文06-19

    數學小論文【優秀】07-17

    學生數學小論文06-28

    數學小論文【必備】07-22

    91久久大香伊蕉在人线_国产综合色产在线观看_欧美亚洲人成网站在线观看_亚洲第一无码精品立川理惠

      在线看的免费三级网站 | 日本欧美国产精品一区二区 | 日本久久夜夜一本婷婷 | 在线点播日韩欧美精品 | 听筒婷婷色色激情五月 | 五月天丁香小婷婷 |