高中數(shù)學(xué)說課稿

    時間:2022-11-18 14:17:09 高中說課稿 我要投稿

    高中數(shù)學(xué)說課稿(集錦15篇)

      作為一位不辭辛勞的人民教師,往往需要進(jìn)行說課稿編寫工作,通過說課稿可以很好地改正講課缺點(diǎn)。那么你有了解過說課稿嗎?以下是小編整理的高中數(shù)學(xué)說課稿,僅供參考,希望能夠幫助到大家。

    高中數(shù)學(xué)說課稿(集錦15篇)

    高中數(shù)學(xué)說課稿1

      今天我說課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時:《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個方面對本課的教學(xué)設(shè)計(jì)進(jìn)行說明。

      一、說教材

      1、本節(jié)在教材中的地位和作用:

      本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識,同時培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說:“最有價值的知識是關(guān)于方法和能力的知識”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。

      2. 教學(xué)目標(biāo)確定:

      (1)能力訓(xùn)練要求

      ①使學(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。

      ②使學(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

      (2)德育滲透目標(biāo)

      ①培養(yǎng)學(xué)生善于通過觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。

      ②提高學(xué)生對事物的感性認(rèn)識到理性認(rèn)識的能力。

      ③培養(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。

      3. 教學(xué)重點(diǎn)、難點(diǎn)確定:

      重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。

      難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。

      二、說教學(xué)方法和手段

      1、教法:

      “以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。

      在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。

      2、教學(xué)手段:

      根據(jù)《教學(xué)大綱》中“堅(jiān)持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營造的“可探索”的環(huán)境里,積極參與,生動活潑地獲取知識,掌握規(guī)律、主動發(fā)現(xiàn)、積極探索。

      三、說學(xué)法:

      這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。

      四、 學(xué)程序:

      [復(fù)習(xí)引入新課]

      1.棱柱的性質(zhì):

      (1)側(cè)棱都相等,側(cè)面是平行四邊形

      (2)兩個底面與平行于底面的截面是全等的多邊形

      (3)過不相鄰的兩條側(cè)棱的截面是平行四邊形

      2.幾個重要的四棱柱:

      平行六面體、直平行六面體、長方體、正方體

      思考:如果將棱柱的上底面給縮小成一個點(diǎn),那么我們得到的將會是什么樣的體呢?

      [講授新課]

      1、棱錐的基本概念

      (1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對角面的概念

      (2).棱錐的表示方法、分類

      2、棱錐的性質(zhì)

      (1). 截面性質(zhì)定理:

      如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

      已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

      證明:(略)

      引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

      的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。

      (2).正棱錐的定義及基本性質(zhì):

      正棱錐的定義:

      ①底面是正多邊形

      ②頂點(diǎn)在底面的射影是底面的中心

      ①各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

      ②棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;

      棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形

      引申:

      ①正棱錐的側(cè)棱與底面所成的角都相等;

      ②正棱錐的側(cè)面與底面所成的二面角相等;

      (3)正棱錐的各元素間的關(guān)系

      下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。

      引申:

      ①觀察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?

      (可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)

      ②若分別假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請?jiān)囃ㄟ^三角形得出以上各元素間的關(guān)系式。

      (課后思考題)

      [例題分析]

      例1.若一個正棱錐每一個側(cè)面的頂角都是600,則這個棱錐一定不是( )

      A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

      (答案:D)

      例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。

      ﹙解析及圖略﹚

      例3.已知正四棱錐的棱長和底面邊長均為a,求:

      (1)側(cè)面與底面所成角α的余弦(2)相鄰兩個側(cè)面所成角β的余弦

      ﹙解析及圖略﹚

      [課堂練習(xí)]

      1、 知一個正六棱錐的高為h,側(cè)棱為L,求它的底面邊長和斜高。

      ﹙解析及圖略﹚

      2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。

      ﹙解析及圖略﹚

      [課堂小結(jié)]

      一:棱錐的基本概念及表示、分類

      二:棱錐的性質(zhì)

      截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

      引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對應(yīng)高的平方比、等于它們的底面積之比。

      2.正棱錐的定義及基本性質(zhì)

      正棱錐的定義:

      ①底面是正多邊形

      ②頂點(diǎn)在底面的射影是底面的中心

      (1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高

      相等,它們叫做正棱錐的斜高;

      (2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個直角三角形

      引申: ①正棱錐的側(cè)棱與底面所成的角都相等;

      ②正棱錐的側(cè)面與底面所成的二面角相等;

      ③正棱錐中各元素間的關(guān)系

      [課后作業(yè)]

      1:課本P52 習(xí)題9.8 : 2、 4

      2:課時訓(xùn)練:訓(xùn)練一

    高中數(shù)學(xué)說課稿2

      各位評委,老師們:大家好!

      很高興參加這次說課活動。這對我來說也是一次難得的學(xué)習(xí)和鍛煉的機(jī)會,感謝各位老師在百忙之中來此予以指導(dǎo)。希望各位評委和老師們對我的說課內(nèi)容提出寶貴意見。

      我說課的內(nèi)容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(試驗(yàn)修訂本—必修)<數(shù)學(xué)>第一冊下,教學(xué)內(nèi)容為第96頁至98頁第五章第一節(jié)。本校是浙江省一級重點(diǎn)中學(xué),學(xué)生基礎(chǔ)相對較好。我在進(jìn)行教學(xué)設(shè)計(jì)時,也充分考慮到了這一點(diǎn)。

      下面我從教材分析,教學(xué)目標(biāo)的確定,教學(xué)方法的選擇和教學(xué)過程的設(shè)計(jì)四個方面來匯報我對這節(jié)課的教學(xué)設(shè)想。

      一說教材

      (1)地位和作用

      向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運(yùn)算(運(yùn)算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實(shí)際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用。

      平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進(jìn)一步對向量的深入學(xué)習(xí)。為學(xué)習(xí)向量的知識體系奠定了知識和方法基礎(chǔ)。

      (2)教學(xué)結(jié)構(gòu)的調(diào)整

      課本在這一部分內(nèi)容的教學(xué)為一課時,首先從小船航行的距離和方向兩個要素出發(fā),抽象出向量的概念,并重點(diǎn)說明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時深化其認(rèn)知過程和探究過程。在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認(rèn)知過程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨(dú)立完成。

      (3)重點(diǎn),難點(diǎn),關(guān)鍵

      由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ)。為了本章后面知識的學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點(diǎn)。本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計(jì)的,盡管此時的學(xué)生已經(jīng)有了一定的學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗(yàn),多數(shù)學(xué)生對向量的認(rèn)識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認(rèn)為向量概念也是這節(jié)課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進(jìn)行辨認(rèn),加深對向量的理解。

      二說教學(xué)目標(biāo)的確定

      根據(jù)本課教材的特點(diǎn),新大綱對本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個方面確定了以下教學(xué)目標(biāo):

      (1)基礎(chǔ)知識目標(biāo):理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據(jù)圖形判定向量是否平行,共線,相等。

      (2)能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問題,分析問題,解決問題的能力。

      (3)情感目標(biāo):讓學(xué)生在民主、和諧的共同活動中感受學(xué)習(xí)的樂趣。

      三說教學(xué)方法的選擇

      Ⅰ教學(xué)方法

      本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):

      (1)由教材的特點(diǎn)確立類比思維為教學(xué)的主線。

      從教材內(nèi)容看平面向量無論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似。因此在教學(xué)中運(yùn)用類比作為思維的主線進(jìn)行教學(xué)。讓學(xué)生充分體會數(shù)學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過程。

      (2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習(xí)方法

      通常學(xué)生對于概念課學(xué)起來很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認(rèn)可,要多表揚(yáng),多肯定來激勵他們的學(xué)習(xí)熱情。考慮到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對自主探索式的學(xué)習(xí)方法也有一定的認(rèn)識,所以在教學(xué)中我通過創(chuàng)設(shè)問題情境,啟發(fā)引導(dǎo)學(xué)生運(yùn)用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨(dú)立思考,自主探究,交流討論等探索活動貫穿于課堂教學(xué)的全過程,突出學(xué)生的主體作用。

      Ⅱ教學(xué)手段

      本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計(jì)算機(jī)來輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計(jì)算機(jī)演示的作圖過程則有助于滲透數(shù)形結(jié)合思想,更易于對概念的理解和難點(diǎn)的突破。

      四教學(xué)過程的設(shè)計(jì)

      Ⅰ知識引入階段———提出學(xué)習(xí)課題,明確學(xué)習(xí)目標(biāo)

      (1)創(chuàng)設(shè)情境——引入概念

      數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗(yàn)和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識并掌握數(shù)學(xué)。

      由生活中具體的向量的實(shí)例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

      (2)觀察歸納——形成概念

      由實(shí)例得出有向線段的概念,有向線段的三個要素:起點(diǎn),方向,長度。明確知道了有向線段的起點(diǎn),方向和長度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設(shè)計(jì),引導(dǎo)學(xué)生概括總結(jié)出本課新的知識點(diǎn):向量的概念及其幾何表示。

      (3)討論研究——深化概念

      在得到概念后進(jìn)行歸納,深化,之后向?qū)W生提出以下三個問題:

      ①向量的要素是什么?

      ②向量之間能否比較大小?

      ③向量與數(shù)量的區(qū)別是什么?

      同時指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題。

      Ⅱ知識探索階段———探索平面向量的平行向量。相等向量等概念

      (1)總結(jié)反思——提高認(rèn)識

      方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

      (2)即時訓(xùn)練—鞏固新知

      為了使學(xué)生達(dá)到對知識的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時訓(xùn)練題,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識。

      [練習(xí)1]判斷下列命題是否正確,若不正確,請簡述理由.

      ①向量與是共線向量,則A、B、C、D四點(diǎn)必在一直線上;

      ②單位向量都相等;

      ③任一向量與它的相反向量不相等;

      ④四邊形ABCD是平行四邊形的充要條件是=;

      ⑤模為0是一個向量方向不確定的充要條件;

      ⑥共線的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.

      [練習(xí)2]下列命題正確的是( )

      A.a(chǎn)與b共線,b與c共線,則a與c也共線

      B.任意兩個相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)

      C.向量a與b不共線,則a與b都是非零向量

      D.有相同起點(diǎn)的兩個非零向量不平行

      Ⅲ知識應(yīng)用階段————共線向量,相等向量等概念的初步應(yīng)用

      在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個復(fù)雜圖形中觀察,辨認(rèn)平行,相等的有向線段。選用本題的目的是讓學(xué)生進(jìn)行獨(dú)立思考,自主探究,交流討論等探索活動,加深對概念的理解和對難點(diǎn)的突破。

      例如圖所示,設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時思考:向量與相等么?向量與相等么?)

      具體教學(xué)安排如下:

      (1)分析解決問題

      先引導(dǎo)學(xué)生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個向量只有當(dāng)它們的模相等,同時方向又相同時,才能稱它們相等。進(jìn)而進(jìn)行正確的辨認(rèn),直至最終解決問題。

      (2)歸納解題方法

      主要引導(dǎo)學(xué)生歸納以下兩個問題:①零向量的方向是任意的,它只與零向量相

      等;②兩個向量只要它們的模相等,方向相同就是相等向量。一個向量只要不改變它的大小和方向,是可以任意平行移動的,既向量是自由的。

      Ⅳ學(xué)習(xí),小結(jié)階段———?dú)w納知識方法,布置課后作業(yè)

      本階段通過學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識,技能,方法的一般規(guī)律,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。

      具體的教學(xué)安排如下:

      (1)知識,方法小結(jié)在知識層面上我首先引導(dǎo)學(xué)生回顧本節(jié)課的主要內(nèi)容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類比,加深對每個概念的理解。

      在方法層面上我將帶領(lǐng)學(xué)生回顧探索過程中用到的思維方法和數(shù)學(xué)方法如:

      類比,數(shù)形結(jié)合,等價轉(zhuǎn)化等進(jìn)行強(qiáng)調(diào)。

      (2)布置課后作業(yè)

      閱讀教材96至97頁內(nèi)容,整理課堂筆記,習(xí)題5。1第1,2,3題。

    高中數(shù)學(xué)說課稿3

      課題《數(shù)列的概念與簡單表示方法(一)》選自普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書人教版A版數(shù)學(xué)必修5第二章第一節(jié)的第一課時。我將從教材分析、學(xué)情分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過程這五個方面來匯報我對這節(jié)課的教學(xué)設(shè)想。

      一、教材分析

      1、教材的地位和作用

      數(shù)列是高中數(shù)學(xué)的重要內(nèi)容之一,它的地位作用可以從三個方面來看:

      (1)數(shù)列有著廣泛的實(shí)際應(yīng)用。如堆放的物品的總數(shù)計(jì)算要用到數(shù)列的前n項(xiàng)和,又如分期儲蓄、付款公式的有關(guān)計(jì)算也要用到數(shù)列的一些知識。

      (2)數(shù)列起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決數(shù)列的某些問題中得到了充分運(yùn)用,數(shù)列是前面函數(shù)知識的延伸及應(yīng)用,可以使學(xué)生加深對函數(shù)概念的理解;另一方面,學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限,等差數(shù)列、等比數(shù)列的前n項(xiàng)和以及通項(xiàng)公式打好了鋪墊。因此就有必要講好、學(xué)好數(shù)列。

      (3)數(shù)列是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。是進(jìn)行計(jì)算,推理等基本訓(xùn)練,綜合訓(xùn)練的重要教材。學(xué)習(xí)數(shù)列,要經(jīng)常觀察、分析、歸納、猜想,還要綜合運(yùn)用前面的知識解決數(shù)列中的一些問題,這些都有助于學(xué)生數(shù)學(xué)能力的提高。

      二、學(xué)情分析

      從學(xué)生知識層面看:學(xué)生對數(shù)列已有初步的認(rèn)識,對方程、函數(shù)、數(shù)學(xué)公式的運(yùn)用已有一定的基礎(chǔ),對方程、函數(shù)思想的體會也逐漸深刻。

      從學(xué)生素質(zhì)層面看:從高一新生入學(xué)開始,我就很注意學(xué)生自主探究習(xí)慣的養(yǎng)成。現(xiàn)階段我的學(xué)生思維活躍,課堂參與意識較強(qiáng),而且已經(jīng)具有一定的分析、推理能力。

      三、教學(xué)目標(biāo)分析

      根據(jù)上面的教材分析以及學(xué)情分析,確定了本節(jié)課的教學(xué)目標(biāo):

      (1)知識目標(biāo):認(rèn)識數(shù)列的特點(diǎn),掌握數(shù)列的概念及表示方法,并明白數(shù)列與集合的不同點(diǎn)。了解數(shù)列通項(xiàng)公式的意義及數(shù)列分類。能由數(shù)列的通項(xiàng)公式求出數(shù)列的各項(xiàng),反之,又能由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個通項(xiàng)公式。

      (2)能力目標(biāo):通過對數(shù)列概念以及通項(xiàng)公式的探究、推導(dǎo)、應(yīng)用等過程,鍛煉了學(xué)生的觀察、歸納、類比等分析問題的能力。同時更深層次的理解了數(shù)學(xué)知識之間的相互滲透性思想。

      (3)情感目標(biāo):在教學(xué)中使學(xué)生體會教學(xué)知識與現(xiàn)實(shí)世界的聯(lián)系,并且利用各種有趣的,貼近學(xué)生生活的素材激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)熱愛生活的情感。

      四、教學(xué)重點(diǎn)與難點(diǎn)

      根據(jù)教學(xué)目標(biāo)以及學(xué)生的理解能力與認(rèn)知水平,我確定了如下的教學(xué)重難點(diǎn)。

      重點(diǎn):理解數(shù)列的概念,能由函數(shù)的觀點(diǎn)去認(rèn)識數(shù)列,以及對通項(xiàng)公式的理解。

      難點(diǎn):根據(jù)數(shù)列的前幾項(xiàng)的特點(diǎn),通過多角度、多層次的觀察分析歸納出數(shù)列的一個通項(xiàng)公式。

      五、教法分析

      根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際情況,結(jié)合波利亞的先猜后證理論,本節(jié)課主要以講解法為主,引導(dǎo)發(fā)現(xiàn)為輔,由老師帶領(lǐng)同學(xué)們發(fā)現(xiàn)問題,分析問題,并解決問題.考慮到學(xué)生的認(rèn)知過程,本節(jié)課會采用由易到難的教學(xué)進(jìn)程以及實(shí)例給出與練習(xí)設(shè)置,讓學(xué)生們充分體會到事物的發(fā)展規(guī)律。同時為了增大課堂容量,提高教學(xué)效率,更吸引同學(xué)們的眼光,提高學(xué)習(xí)熱情,本節(jié)課還會采用常規(guī)手段與現(xiàn)代手段相結(jié)合的辦法,充分利用多媒體,將引例、例題具體呈現(xiàn).

    高中數(shù)學(xué)說課稿4

      一、教學(xué)目標(biāo)

      (1)知識與能力目標(biāo):學(xué)習(xí)橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推

      導(dǎo)過程;能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程。

      (2)過程與方法目標(biāo):通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探

      索能力;通過對橢圓標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,提高學(xué)生運(yùn)用坐標(biāo)法解決幾何問題的能力,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學(xué)思想方法。

      (3)情感、態(tài)度與價值觀目標(biāo):通過讓學(xué)生大膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識,培養(yǎng)學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認(rèn)識論。

      二、教學(xué)重點(diǎn)、難點(diǎn)

      (1)教學(xué)重點(diǎn):橢圓的定義及橢圓標(biāo)準(zhǔn)方程,用待定系數(shù)法和定義法求曲線方程。

      (2)教學(xué)難點(diǎn):橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)。

      三、教學(xué)過程

      (一)創(chuàng)設(shè)情境,引入概念

      1、動畫演示,描繪出橢圓軌跡圖形。

      2、實(shí)驗(yàn)演示。

      思考:橢圓是滿足什么條件的點(diǎn)的軌跡呢?

      (二)實(shí)驗(yàn)探究,形成概念

      1、動手實(shí)驗(yàn):學(xué)生分組動手畫出橢圓。

      實(shí)驗(yàn)探究:

      保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?

      思考:根據(jù)上面探究實(shí)踐回答,橢圓是滿足什么條件的點(diǎn)的軌跡?

      2、概括橢圓定義

      引導(dǎo)學(xué)生概括橢圓定義橢圓定義:平面內(nèi)與兩個定點(diǎn)距離的和等于常數(shù)(大于)的點(diǎn)的軌跡叫橢圓。

      教師指出:這兩個定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫橢圓的焦距。

      思考:焦點(diǎn)為的橢圓上任一點(diǎn)M,有什么性質(zhì)?

      令橢圓上任一點(diǎn)M,則有

      (三)研討探究,推導(dǎo)方程

      1、知識回顧:利用坐標(biāo)法求曲線方程的一般方法和步驟是什么?

      2、研討探究

      問題:如圖已知焦點(diǎn)為的橢圓,且=2c,對橢圓上任一點(diǎn)M,有

      ,嘗試推導(dǎo)橢圓的方程。

      思考:如何建立坐標(biāo)系,使求出的方程更為簡單?

      將各組學(xué)生的討論方案歸納起來評議,選定以下兩種方案,由各組學(xué)生自己完成設(shè)點(diǎn)、列式、化簡。

      方案一方案二

      按方案一建立坐標(biāo)系,師生研討探究得到橢圓標(biāo)準(zhǔn)方程

      =1(),其中b2=a2-c2(b>0);

      選定方案二建立坐標(biāo)系,由學(xué)生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b>0)。

      教師指出:我們所得的兩個方程=1和=1()都是橢圓的標(biāo)準(zhǔn)方程。

      (四)歸納概括,方程特征

      1、觀察橢圓圖形及其標(biāo)準(zhǔn)方程,師生共同總結(jié)歸納

      (1)橢圓標(biāo)準(zhǔn)方程對應(yīng)的橢圓中心在原點(diǎn),以焦點(diǎn)所在軸為坐標(biāo)軸;

      (2)橢圓標(biāo)準(zhǔn)方程形式:左邊是兩個分式的平方和,右邊是1;

      (3)橢圓標(biāo)準(zhǔn)方程中三個參數(shù)a,b,c關(guān)系:;

      (4)橢圓焦點(diǎn)的位置由標(biāo)準(zhǔn)方程中分母的大小確定;

      (5)求橢圓標(biāo)準(zhǔn)方程時,可運(yùn)用待定系數(shù)法求出a,b的值。

      2、在歸納總結(jié)的基礎(chǔ)上,填下表

      標(biāo)準(zhǔn)方程

      圖形a,b,c關(guān)系焦點(diǎn)坐標(biāo)焦點(diǎn)位置

      在x軸上

      在y軸上

      (五)例題研討,變式精析

      例1、求適合下列條件的橢圓的標(biāo)準(zhǔn)方程

      (1)兩個焦點(diǎn)的坐標(biāo)分別是,橢圓上一點(diǎn)P到兩焦點(diǎn)距離和等于10。

      (2)兩焦點(diǎn)坐標(biāo)分別是,并且橢圓經(jīng)過點(diǎn)。

      例2、(1)若橢圓標(biāo)準(zhǔn)方程為及焦點(diǎn)坐標(biāo)。

      (2)若橢圓經(jīng)過兩點(diǎn)求橢圓標(biāo)準(zhǔn)方程。

      (3)若橢圓的一個焦點(diǎn)是,則k的值為。

      (A)(B)8(C)(D)32

      例3、如圖,已知一個圓的圓心為坐標(biāo)原點(diǎn),半徑為2,從這個圓上任意一點(diǎn)P向x軸作垂線段,求線段中點(diǎn)M的軌跡。

      (六)變式訓(xùn)練,探索創(chuàng)新

      1、寫出適合下列條件的橢圓標(biāo)準(zhǔn)方程

      (1),焦點(diǎn)在x軸上;

      (2)焦點(diǎn)在x軸上,焦距等于4,并且經(jīng)過點(diǎn)P;

      2、若方程表示焦點(diǎn)在y軸上的橢圓,則k的范圍。

      3、已知B,C是兩個定點(diǎn),周長為16,求頂點(diǎn)A的軌跡方程。

      4、已知橢圓的焦距相等,求實(shí)數(shù)m的值。

      5、在橢圓上上求一點(diǎn),使它與兩個焦點(diǎn)連線互相垂直。

      6、已知P是橢圓上一點(diǎn),其中為其焦點(diǎn)且,求三解形面積。

      (七)小結(jié)歸納,提高認(rèn)識

      師生共同歸納本節(jié)所學(xué)內(nèi)容、知識規(guī)律以及所學(xué)的數(shù)學(xué)思想和方法。

      (八)作業(yè)訓(xùn)練,鞏固提高

      課本第96頁習(xí)題§8。1第3題、第5題、第6題。

      課后思考題:

      1、知是橢圓的兩個焦點(diǎn),AB是過的弦,則周長是。

      (A)2a(B)4a(C)8a(D)2a2b

      2、的兩個頂點(diǎn)A,B的坐標(biāo)分別是邊AC,BC所在直線的斜

      率之積等于,求頂點(diǎn)C的軌跡方程。

      2、與圓外切,同時與圓內(nèi)切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?

      教學(xué)設(shè)計(jì)說明

      橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學(xué)習(xí)是后繼學(xué)習(xí)其它圓錐曲線的基礎(chǔ),坐標(biāo)法是解析幾何中的重要數(shù)學(xué)方法,橢圓方程的推導(dǎo)是利用坐標(biāo)法求曲線方程的很好應(yīng)用實(shí)例。本節(jié)課內(nèi)容的學(xué)習(xí)能很好地在課堂教學(xué)中展現(xiàn)新課程的理念,主要采用學(xué)生自主探究學(xué)習(xí)的方式,使培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力的教學(xué)思想貫穿于本節(jié)課教學(xué)設(shè)計(jì)的始終。

      橢圓是生活中常見的圖形,通過實(shí)驗(yàn)演示,創(chuàng)設(shè)生動而直觀的情境,使學(xué)生親身體會橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習(xí)興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學(xué)生動手畫橢圓并合作探究的學(xué)習(xí)方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數(shù)學(xué)化過程,有利于培養(yǎng)學(xué)生觀察分析、抽象概括的能力。

      橢圓方程的化簡是學(xué)生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學(xué)生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過程,使學(xué)生真正了解橢圓標(biāo)準(zhǔn)方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學(xué)生體會成功的快樂,提高學(xué)生的數(shù)學(xué)探究能力,培養(yǎng)學(xué)生獨(dú)立主動獲取知識的能力。

      設(shè)計(jì)例題、習(xí)題的研討探究變式訓(xùn)練,是為了讓學(xué)生能靈活地運(yùn)用橢圓的知識解決問題,同時也是為了更好地調(diào)動、活躍學(xué)生的思維,發(fā)展學(xué)生數(shù)學(xué)思維能力,讓學(xué)生在解決問題中發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新能力,同時培養(yǎng)學(xué)生大膽實(shí)踐、勇于探索的精神,開闊學(xué)生知識應(yīng)用視野。

    高中數(shù)學(xué)說課稿5

      高中數(shù)學(xué)第三冊(選修)Ⅱ第一章第2節(jié)第一課時

      一、教材分析

      教材的地位和作用

      期望是概率論和數(shù)理統(tǒng)計(jì)的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計(jì)知識做鋪墊。同時,它在市場預(yù)測,經(jīng)濟(jì)統(tǒng)計(jì),風(fēng)險與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響。

      教學(xué)重點(diǎn)與難點(diǎn)

      重點(diǎn):離散型隨機(jī)變量期望的概念及其實(shí)際含義。

      難點(diǎn):離散型隨機(jī)變量期望的實(shí)際應(yīng)用。

      [理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對離散性隨機(jī)變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點(diǎn)。此外,學(xué)生初次應(yīng)用概念解決實(shí)際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點(diǎn)。

      二、教學(xué)目標(biāo)

      [知識與技能目標(biāo)]

      通過實(shí)例,讓學(xué)生理解離散型隨機(jī)變量期望的概念,了解其實(shí)際含義。

      會計(jì)算簡單的離散型隨機(jī)變量的期望,并解決一些實(shí)際問題。

      [過程與方法目標(biāo)]

      經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進(jìn)一步體會從特殊到一般的思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。

      通過實(shí)際應(yīng)用,培養(yǎng)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識。

      [情感與態(tài)度目標(biāo)]

      通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實(shí)現(xiàn)自我的價值。

      三、教法選擇

      引導(dǎo)發(fā)現(xiàn)法

      四、學(xué)法指導(dǎo)

      “授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

      五、教學(xué)的基本流程設(shè)計(jì)

      高中數(shù)學(xué)第三冊《離散型隨機(jī)變量的期望》說課教案.rar

    高中數(shù)學(xué)說課稿6

      一、教材分析

      1、教材地位和作用

      二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時它也是空間中線線、線面、面面垂直關(guān)系的一個匯集點(diǎn)。搞好本節(jié)課的學(xué)習(xí),對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運(yùn)用。

      2、教學(xué)目標(biāo)

      根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo):

      認(rèn)知目標(biāo):

      (1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。

      (2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

      能力目標(biāo):以培養(yǎng)學(xué)生的創(chuàng)新能力和動手能力為重點(diǎn)。

      (1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。

      (2)通過對圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動手操作能力。

      教育目標(biāo):

      (1)使學(xué)生認(rèn)識到數(shù)學(xué)知識來自實(shí)踐,并服務(wù)于實(shí)踐,從而增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識。

      (2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

      3、本節(jié)課教學(xué)的重、難點(diǎn)是兩個過程的教學(xué):

      (1)二面角的平面角概念的形成過程。

      (2)尋找二面角的平面角的方法的發(fā)現(xiàn)過程。

      其理由如下:

      (1)現(xiàn)行教材省略了概念的形成過程和方法的發(fā)現(xiàn)過程,沒有反映出科學(xué)認(rèn)識產(chǎn)生的辯證過程,與學(xué)生的認(rèn)知規(guī)律相悖,給學(xué)生的學(xué)習(xí)造成了很大的困難,非常不利于學(xué)生創(chuàng)新能力、獨(dú)立思考能力以及動手能力的培養(yǎng)。

      (2)現(xiàn)代認(rèn)知學(xué)認(rèn)為,揭示知識的形成過程,對學(xué)生學(xué)習(xí)新知識是十分必要的。同時通過展現(xiàn)知識的發(fā)生、發(fā)展過程,給學(xué)生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學(xué)生在整個教學(xué)過程中始終處于積極的思維狀態(tài),進(jìn)而培養(yǎng)他們獨(dú)立思考和大膽求索的精神,這樣才能全面落實(shí)本節(jié)課的教學(xué)目標(biāo)。

      二、指導(dǎo)思想和教學(xué)方法

      在設(shè)計(jì)本教學(xué)時,主要貫徹了以下兩個思想:

      1、樹立以學(xué)生發(fā)展為本的思想。通過構(gòu)建以學(xué)習(xí)者為中心、有利于學(xué)生主體精神、創(chuàng)新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動手操作的機(jī)會,鼓勵他們創(chuàng)新思考,親身參與概念和方法的形成過程。2、堅(jiān)持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學(xué)法創(chuàng)新有機(jī)地統(tǒng)一起來,因?yàn)橹挥薪處焺?chuàng)新地教,學(xué)生創(chuàng)新地學(xué),才能營建一個有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。

      首先是教材創(chuàng)新。

      (1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發(fā)現(xiàn)過程。

      (2)在引入定義之后,例題講解之前,引導(dǎo)學(xué)生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。

      (3)重新編排例題。

      其次是教法創(chuàng)新。采用多種創(chuàng)新的教學(xué)方法,包括問題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學(xué)方法。

      這組教學(xué)方法的特點(diǎn)是教師通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識的形成過程,使教學(xué)活動真正建立在學(xué)生自主活動和探索的基礎(chǔ)上,著力培養(yǎng)學(xué)生的創(chuàng)新能力。

      這組教學(xué)方法使得學(xué)生在解決問題的過程中學(xué)數(shù)學(xué),用數(shù)學(xué),不僅強(qiáng)調(diào)動腦思考,而且強(qiáng)調(diào)動手操作,親身體驗(yàn),注重多感官參與、多種心理能力的投入,通過學(xué)生全面、多樣的主體實(shí)踐活動,促進(jìn)他們獨(dú)立思考能力、動手能力等多方面素質(zhì)的整體發(fā)展。

      教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用《幾何畫板》制作課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),教師可預(yù)先做好一些模型。

      最后是學(xué)法創(chuàng)新。意在指導(dǎo)學(xué)生會創(chuàng)新地學(xué)。

      1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

      2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會建立完善的認(rèn)知結(jié)構(gòu)。

      3、會學(xué):通過自已親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新。

      三、程序安排

      (一)、二面角

      1、揭示概念產(chǎn)生背景。

      心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時,就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。

      問題情境1、我們是如何定量研究兩平行平面的相對位置的?

      問題情境2、立幾中常用距離和角來定量描述兩個元素之間的相對位置,為什么不引入兩平行平面所成的角?

      問題情境3、我們應(yīng)如何定量研究兩個相交平面之間的相對位置呢?

      通過這三個問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因?yàn)檠芯績上嘟黄矫娴南鄬ξ恢玫男枰瑥亩鞔_新課題研究的必要性,觸發(fā)學(xué)生積極思維活動的展開。

      2、展現(xiàn)概念形成過程。

    高中數(shù)學(xué)說課稿7

      一.說教材

      1.1 教材結(jié)構(gòu)與內(nèi)容簡析

      本節(jié)課為《江蘇省中等職業(yè)學(xué)校試用教材數(shù)學(xué)(第二冊)》5.6函數(shù)圖象的定位作圖法的第一課時,主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。

      函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊(yùn)涵著重要的數(shù)學(xué)思想方法,如化歸思想、映射與對應(yīng)思想、換元方法等。

      1.2 教學(xué)目標(biāo)

      1.2.1知識目標(biāo)

      ⑴、給定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號的關(guān)系。

      ⑵、能較熟練地化簡較復(fù)雜的函數(shù)解析式,找出對應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。

      ⑶、初步學(xué)會應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。

      1.2.2能力目標(biāo)

      ⑴、在數(shù)學(xué)實(shí)驗(yàn)平臺上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。

      ⑵、結(jié)合學(xué)習(xí)中發(fā)現(xiàn)的問題,學(xué)會借助于數(shù)學(xué)軟件等工具研究、探索和解決問題,學(xué)會數(shù)學(xué)

      地解決問題。

      ⑶、滲透數(shù)學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習(xí),發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺等)。

      1.2.3情感目標(biāo)

      培養(yǎng)學(xué)生積極參與、合作交流的主體意識,在知識的探索和發(fā)現(xiàn)的過程中,使學(xué)生感受數(shù)學(xué)學(xué)習(xí)的意義,改善學(xué)生的數(shù)學(xué)學(xué)習(xí)信念(態(tài)度、興趣等)。

      1.3 教材重點(diǎn)和難點(diǎn)處理思路

      重點(diǎn):函數(shù)圖象的平移變換規(guī)律及應(yīng)用

      難點(diǎn):經(jīng)歷數(shù)學(xué)實(shí)驗(yàn)方法探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡函數(shù)解析式、研究復(fù)雜函數(shù)

      教材在這段內(nèi)容的處理上,注重直觀性背景,注重學(xué)生豐富感性知識的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實(shí)際教學(xué)中,我們發(fā)現(xiàn)如果學(xué)生不經(jīng)受足夠的親身體驗(yàn)而簡單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單的“告訴”方式,須讓學(xué)生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然。”

      為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:

      ⑴、從學(xué)生已有知識出發(fā),精心設(shè)計(jì)一些適合學(xué)生學(xué)力的數(shù)學(xué)實(shí)驗(yàn)平臺,分層次逐步引導(dǎo)學(xué)生觀察圖象的平移方向與函數(shù)解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設(shè)情境,引發(fā)學(xué)生認(rèn)知沖突,激發(fā)學(xué)生求知欲,能借助于數(shù)學(xué)軟件多角度積極探求錯誤原因,使學(xué)生認(rèn)識到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認(rèn)識解析式形式化的特點(diǎn)。

      ⑶、數(shù)學(xué)實(shí)驗(yàn)采取小組合作研究共同完成簡單實(shí)驗(yàn)報告的形式,通過學(xué)生的自主探究、合作交流,從而實(shí)現(xiàn)對平移變換規(guī)律知識的建構(gòu)。

      二.說教法

      針對職高一年級學(xué)生的認(rèn)知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎(chǔ)上,本節(jié)課我主要采取以實(shí)驗(yàn)發(fā)現(xiàn)法為主,以討論法、練習(xí)法為輔的教學(xué)方法,引導(dǎo)學(xué)生通過實(shí)驗(yàn)手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學(xué)知識建構(gòu)過程,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)的喜悅。

      本節(jié)課的設(shè)計(jì)一方面重視學(xué)生數(shù)學(xué)學(xué)習(xí)過程是活動的過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學(xué)規(guī)則去操作數(shù)學(xué),而是采取數(shù)學(xué)實(shí)驗(yàn)的方式,使學(xué)生有機(jī)會經(jīng)受足夠的親身體驗(yàn),親歷知識的自主建構(gòu)過程;使學(xué)生學(xué)會從具體情境中提取適當(dāng)?shù)母拍睿瑥挠^察到的實(shí)例中進(jìn)行概括,進(jìn)行合理的數(shù)學(xué)猜想與數(shù)學(xué)驗(yàn)證,并作更高層次的數(shù)學(xué)概括與抽象;從而學(xué)會數(shù)學(xué)地思考。

      另一方面,注重創(chuàng)設(shè)機(jī)會使學(xué)生有機(jī)會看到數(shù)學(xué)的全貌,體會數(shù)學(xué)的全過程。整堂課的設(shè)計(jì)圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學(xué)生清楚研究函數(shù)圖象平移的必要性,明確學(xué)習(xí)目標(biāo),又讓學(xué)生初步學(xué)會如何應(yīng)用規(guī)律解決問題,體會知識的價值,增強(qiáng)求知欲。

      總之,本節(jié)課采用數(shù)學(xué)實(shí)驗(yàn)發(fā)現(xiàn)教學(xué),學(xué)生采取小組合作的形式自主探究;利用實(shí)物投影進(jìn)行集體交流,及時反饋相關(guān)信息。

      三.說學(xué)法

      “學(xué)之道在于悟,教之道在于度。”學(xué)生是學(xué)習(xí)的主體,教師在教學(xué)過程中須將學(xué)習(xí)的主動權(quán)交給學(xué)生。

      美國某大學(xué)有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領(lǐng)會了;讓我做過的,我就理解了。”通過學(xué)生的自主實(shí)驗(yàn),在探索新知的經(jīng)歷和獲得新知的體驗(yàn)的基礎(chǔ)之上,真正正確掌握平移方向。

      教師的“教”不僅要讓學(xué)生“學(xué)會知識”,更主要的是要讓學(xué)生“會學(xué)知識”。正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所指出,“數(shù)學(xué)知識既不是教出來的,也不是學(xué)出來的,而是研究出來的。”本節(jié)課的教學(xué)中創(chuàng)設(shè)利于學(xué)生發(fā)現(xiàn)數(shù)學(xué)的實(shí)驗(yàn)情境,讓學(xué)生自主地“做數(shù)學(xué)”,將傳統(tǒng)意義下的“學(xué)習(xí)”數(shù)學(xué)改變?yōu)椤把芯俊睌?shù)學(xué)。從而,使傳授知識與培養(yǎng)能力融為一體,在轉(zhuǎn)變學(xué)習(xí)方式的同時學(xué)會數(shù)學(xué)地思考。

      四.說程序

      4.1創(chuàng)設(shè)情境,引入課題

      在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?”

      引導(dǎo)學(xué)生討論后,總結(jié)出兩種思路,即:思路1、通過描點(diǎn)法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。

      從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。

      4.2數(shù)學(xué)實(shí)驗(yàn),自主探索

      這一環(huán)節(jié)主要分兩階段。

      1、嘗試初探

      引例、函數(shù) 與 圖象間的關(guān)系

      這一階段主要由教師講解,學(xué)生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。

      講解時,利用幾何畫板的度量功能,給出兩個對應(yīng)點(diǎn)的坐標(biāo),易于學(xué)生發(fā)現(xiàn)點(diǎn)的坐標(biāo)關(guān)系,并給出相應(yīng)的輔助線,一方面便于學(xué)生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學(xué)習(xí)作好鋪墊。

      2、實(shí)驗(yàn)發(fā)現(xiàn)

      本階段由學(xué)生以小組合作探索的形式完成,通過填寫實(shí)驗(yàn)報告的形式完成探索規(guī)律的任務(wù)。 實(shí)驗(yàn)1、試改變實(shí)驗(yàn)平臺1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。

      函數(shù) 解析式平移變換規(guī)律12向左平移2個單位,向上平移1個單位 實(shí)驗(yàn)結(jié)論

    高中數(shù)學(xué)說課稿8

      1、教學(xué)目標(biāo):

      一、借助單位圓理解任意角的三角函數(shù)的定義。

      二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。

      三、通過學(xué)生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。

      四、讓學(xué)生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。

      2、教學(xué)重點(diǎn)與難點(diǎn):

      重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。

      難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過程。

      授課過程:

      一、引入

      在我們的現(xiàn)實(shí)世界中的許多運(yùn)動變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來刻畫這種變化?從這節(jié)課開始,我們要來學(xué)習(xí)刻畫這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。

      二、創(chuàng)設(shè)情境

      三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時,我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進(jìn)行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?

      學(xué)生情況估計(jì):學(xué)生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點(diǎn)P的坐標(biāo)。

      問題:

      1、銳角三角函數(shù)能否表示成第二種比值方式?

      2、點(diǎn)P能否取在終邊上的其它位置?為什么?

      3、點(diǎn)P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。

      練習(xí):計(jì)算的各三角函數(shù)值。

      三、任意角的三角函數(shù)的定義

      角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?

      嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?

      評價學(xué)生給出的定義。給出任意角三角函數(shù)的定義。

      四、解析任意角三角函數(shù)的定義

      三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點(diǎn)解析三角函數(shù)嗎?(定義域)

      對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實(shí)數(shù)集之間可以建立一一對應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù)。

      五、三角函數(shù)的應(yīng)用。

      1、已知角,求a的三角函數(shù)值。

      2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數(shù)值。

      以上兩道書上的例題,讓學(xué)生自習(xí)看書,學(xué)生看書的同時,老師提出問題:

      1、已知角如何求三角函數(shù)值?

      2、利用角a的終邊上任意一點(diǎn)的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點(diǎn)?)

      3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數(shù)值。

      4、探究:三角函數(shù)的值在各象限的符號。

      六、小結(jié)及作業(yè)

      教案設(shè)計(jì)說明:

      新教材的教學(xué)理念之一是讓學(xué)生去體驗(yàn)新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點(diǎn)來設(shè)計(jì)。

      首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學(xué)生體會到新知識的發(fā)生是可能的,自然的。

      其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時讓學(xué)生去辨證這個想法是否是科學(xué)的?因?yàn)橐粋概念是嚴(yán)謹(jǐn)?shù)模茖W(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學(xué)生去體驗(yàn)一個新的數(shù)學(xué)概念可能是如何形成,在形成的過程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數(shù)概念的理解。

      再次,讓學(xué)生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉(zhuǎn)換到直角坐標(biāo)系下點(diǎn)的坐標(biāo)這個"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。

    高中數(shù)學(xué)說課稿9

      一、教材地位與作用

      本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。因此,正弦定理的知識非常重要。

      二、學(xué)情分析

      作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。

      教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

      教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

      根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo)

      教學(xué)目標(biāo)分析:

      知識目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。

      能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。

      情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實(shí)際應(yīng)用價值。

      三、教法學(xué)法分析

      教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

      學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

      四、教學(xué)過程

      (一)創(chuàng)設(shè)情境,布疑激趣

      “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實(shí)際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

      (二)探尋特例,提出猜想

      1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

      2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。

      3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

      在三角形中,角與所對的邊滿足關(guān)系

      這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

      (三)邏輯推理,證明猜想

      1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

      2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

      3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

      4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。

      (四)歸納總結(jié),簡單應(yīng)用

      1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

      2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

      3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價值觀。

      (五)講解例題,鞏固定理

      1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

      例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

      2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

      例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

      (六)課堂練習(xí),提高鞏固

      1.在△ABC中,已知下列條件,解三角形。

      (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

      2.在△ABC中,已知下列條件,解三角形。

      (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

      學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

      (七)小結(jié)反思,提高認(rèn)識

      通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

      1.用向量證明了正弦定

      理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

      2.它表述了三角形的邊與對角的正弦值的關(guān)系。

      3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

      (從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

      (八)任務(wù)后延,自主探究

      如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

    高中數(shù)學(xué)說課稿10

      一、教材分析:

      《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運(yùn)算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在"平面向量"及"空間向量"中有很重要的地位。

      二、學(xué)情分析:

      學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學(xué)習(xí)本節(jié)資料的基礎(chǔ)。學(xué)生對數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個加法法則的特點(diǎn)。

      三、教學(xué)目的:

      1、經(jīng)過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個已知向量的和向量。

      2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。

      3、經(jīng)過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的本事。

      四、教學(xué)重、難點(diǎn)

      重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。

      難點(diǎn):對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

      五、教學(xué)方法

      本節(jié)采用以下教學(xué)方法:

      1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。

      2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;經(jīng)過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。

      3、講解與練習(xí):對兩個法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。

      4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運(yùn)算律。

      六、數(shù)學(xué)思想的體現(xiàn):

      1、分類的思想:總的.來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

      2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。

      3、歸納思想:主要體此刻以下三個環(huán)節(jié):

      ①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都能夠選用。

      ②由共線向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。

      ③對向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運(yùn)用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。

      七、教學(xué)過程:

      1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。

      2、引入新課:

      (1)平行四邊形法則的引入。

      學(xué)生在物理學(xué)中雖然接觸過位移的合成,可是并沒有構(gòu)成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,可是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點(diǎn)必須在一齊才能用平行四邊形法則,不在一齊不能用。這時要經(jīng)過講解例1,使學(xué)生認(rèn)識到能夠經(jīng)過平移向量,使表示兩個向量的有向線段有共同的起點(diǎn)。這一點(diǎn)對理解及運(yùn)用法則求兩向量的和很重要。

      設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗(yàn)為接入點(diǎn),用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的"起點(diǎn)相同"這一特點(diǎn)的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點(diǎn)不在一齊時,須把起點(diǎn)移到一齊,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

      (2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。

      所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。

      這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。

      設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認(rèn)識到兩個法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個法則的特點(diǎn)與實(shí)質(zhì),并對兩個法則的特點(diǎn)有較深刻的印象。

      (3)共線向量的加法

      方向相同的兩個向量相加,對學(xué)生來說較易完成,"將它們接在一齊,取它們的方向及長度之和,作為和向量的方向與長度。"引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個向量的起點(diǎn)指向第二個向量的終點(diǎn)。

      方向相反的兩個向量相加,對學(xué)生來說是個難點(diǎn),首先從作圖上不明白怎樣做。可是學(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:"異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號。"類比異號兩數(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

      反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則經(jīng)過以上幾個環(huán)節(jié)的討論,能夠作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

      設(shè)計(jì)意圖:經(jīng)過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不一樣位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點(diǎn)。

      (4)向量加法的運(yùn)算律

      ①交換律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角

      形法則得出,理解起來沒什么困難,再一次強(qiáng)化了學(xué)生對兩個法則特點(diǎn)及實(shí)質(zhì)的認(rèn)識。

      ②結(jié)合律:結(jié)合律是經(jīng)過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。

      接下來是對應(yīng)的兩個練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。

      設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣能夠運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點(diǎn)指向最終一個向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。

      3、小結(jié)

      先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個概括本節(jié)知識的機(jī)會,然后用課件展示小結(jié)資料,使學(xué)生印象更深。

      (1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。

      (2)三角形法則首尾相接,適用于任意多個向量的求和。

      (3)運(yùn)算律

    高中數(shù)學(xué)說課稿11

      各位老師,大家好!

      我是08數(shù)學(xué)本科(2)班的xx,我今天說課的題目是集合的含義與表示.下面我先對教材進(jìn)行分析.

      一、教材分析

      集合的含義與表示是選自高中新課標(biāo)A版教材必修1第一章第一節(jié)內(nèi)容。在此之前,學(xué)生已經(jīng)接觸過集合的一些相關(guān)概念,如自然數(shù)的集合、有理數(shù)的集合.集合是一個基礎(chǔ)性概念,是數(shù)學(xué)以至所有科學(xué)的基礎(chǔ),應(yīng)用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現(xiàn),在高考中具有不可忽視的地位.本節(jié)內(nèi)容能夠培養(yǎng)學(xué)生的探索精神和數(shù)學(xué)素養(yǎng).

      二、教學(xué)目標(biāo)

      根據(jù)上述對教材的分析,我確定本節(jié)課的教學(xué)目標(biāo)為 1. 知識與技能目標(biāo) 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數(shù)集.培養(yǎng)學(xué)生的抽象思維能力、分析能力、判斷能力.

      2. 過程與方法目標(biāo)

      應(yīng)用自然語言與集合語言描述不同的具體問題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.

      3. 情感態(tài)度價值觀目標(biāo)

      使得學(xué)生感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美. 培養(yǎng)學(xué)生正確的、高尚的、唯物的價值觀.培養(yǎng)學(xué)生獨(dú)立思考、敢于創(chuàng)新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習(xí)數(shù)學(xué)的興趣. 三、重點(diǎn)和難點(diǎn)

      重點(diǎn):根據(jù)上述對教材的分析,確定的教學(xué)目標(biāo),我確定本節(jié)課的教學(xué)重點(diǎn)為:集合的含義,集合的表示方法.

      難點(diǎn):考慮到學(xué)生已有的知識基礎(chǔ)與認(rèn)知能力,我認(rèn)為教學(xué)難點(diǎn)是集合的表示方法. 關(guān)鍵:學(xué)好本節(jié)課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析

      (1)生理特點(diǎn):高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步走向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨之迅速發(fā)展.

      (2)心理特點(diǎn):高中學(xué)生雖有好奇,好表現(xiàn)的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說教.

      (3)認(rèn)知障礙:有的學(xué)生遺忘了學(xué)過的知識,有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法

      根據(jù)上面的分析,從高中生的心理特點(diǎn)和認(rèn)知水平出發(fā),結(jié)合學(xué)生的實(shí)際情況與認(rèn)知障礙,按照突出重點(diǎn),突破難點(diǎn),本節(jié)課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過程(用描述性語言,不要具體化!)

      根據(jù)以上分析,我對本節(jié)課的教學(xué)過程作如下安排:

      1.引入課題

      先引導(dǎo)學(xué)生回顧自然數(shù)的集合,有理數(shù)的集合,再提出問題:集合的含義是什么呢? 2.新課講解

      (1)分析自然數(shù)的集合,有理數(shù)的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.

      (2)根據(jù)上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見的數(shù)集.

      (3)為了化解教學(xué)難點(diǎn),我將結(jié)合具體的例子,講解列舉法與描述法.

      (4)為了加強(qiáng)學(xué)生對集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實(shí)際問題的能力,我將講解三個不同題型、不同難度的例題. 3.課堂練習(xí)

      為了使得學(xué)生掌握等差數(shù)列的定義與通項(xiàng)公式,提高解題技能,我將在課堂上布置3道不同類型、不同難度的練習(xí)題.

      4.歸納小結(jié)

      完成以上的教學(xué)內(nèi)容后,我將組織學(xué)生對本節(jié)課的內(nèi)容做一個總結(jié),強(qiáng)調(diào)重點(diǎn). 5.布置作業(yè)

      為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置3道不同類型、不同難度的作業(yè)題. 六、板書設(shè)計(jì)

      結(jié)合中學(xué)黑板的特點(diǎn),我將如下板書本節(jié)教學(xué)內(nèi)容: 集合的含義與表示 實(shí)例 1. 2. 3. 集合的含義 常見數(shù)集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習(xí) 作業(yè) 各位老師,以上只是我的一種預(yù)設(shè)方案,但課堂千變?nèi)f化,我將根據(jù)實(shí)際情況靈活掌握,隨機(jī)發(fā)揮.本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝! 1.1.2集合間的基本關(guān)系

      數(shù)學(xué)必修1第一章第二節(jié)第1小節(jié)《集合間的基本關(guān)系》說課稿.

      一 、教學(xué)內(nèi)容分析

      集合概念及其理論是近代數(shù)學(xué)的基石,集合語言是現(xiàn)代數(shù)學(xué)的基本語言,通過學(xué)習(xí)、使用集合語言,有利于學(xué)生簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,高中課程只將集合作為一種語言來學(xué)

      習(xí),學(xué)生將學(xué)會使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象,發(fā)展運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力.

      本章集合的初步知識是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時也是下一節(jié)學(xué)習(xí)集合之間的運(yùn)算的基礎(chǔ),因此本小節(jié)起著承上啟下的重要作用.

      本節(jié)課的教學(xué)重視過程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過問題情境的設(shè)置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數(shù)學(xué)思維。

      二、學(xué)情分析

      本節(jié)課是學(xué)生進(jìn)入高中學(xué)習(xí)的第3節(jié)數(shù)學(xué)課,也是學(xué)生正式學(xué)習(xí)集合語言的第3節(jié)課。由于一切對于學(xué)生來說都是新的,所以學(xué)生的學(xué)習(xí)興趣相對來說比較濃厚,有利于學(xué)習(xí)活動的展開。而集合對于學(xué)生來說既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數(shù)軸求簡單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語言來描述集合之間的關(guān)系。而從具體的實(shí)例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個挑戰(zhàn)。

      根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)和教學(xué)重、難點(diǎn)如下:

      三、教學(xué)目標(biāo): 知識與技能目標(biāo):

      (1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;

      (3)能使用Venn圖表達(dá)集合之間的包含關(guān)系 過程與方法目標(biāo):

      (1)通過復(fù)習(xí)元素與集合之間的關(guān)系,對照實(shí)數(shù)的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;

      (2)初步經(jīng)歷使用最基本的集合語言表示有關(guān)的數(shù)學(xué)對象的過程,體會集合語言,發(fā)展運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力;

      情感、態(tài)度、價值觀目標(biāo):

      (1)了解集合的包含、相等關(guān)系的含義,感受集合語言在描述客觀現(xiàn)實(shí)和數(shù)學(xué)問題中的意義;

      (2)探索利用直觀圖示(Venn圖)理解抽象概念,體會數(shù)形結(jié)合的思想。

      四、本節(jié)課教學(xué)的重、難點(diǎn):

      重點(diǎn):(1)幫助學(xué)生由具體到抽象地認(rèn)識集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點(diǎn):集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學(xué)過程設(shè)計(jì)

      1.新課的引入——設(shè)置問題情境,激發(fā)學(xué)習(xí)興趣

      我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習(xí)方式。那我們來思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當(dāng)學(xué)生感興趣時;當(dāng)學(xué)生智力遭遇到挑戰(zhàn)時;當(dāng)學(xué)生能自主地參與探索和創(chuàng)新時;當(dāng)學(xué)生能夠?qū)W以致用時;當(dāng)學(xué)生得到鼓勵與信任時,他們學(xué)得最好。數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)之上,這樣才能讓學(xué)生體驗(yàn)到成就感,保持積極的興奮狀態(tài)。而集合的語言對于學(xué)生來說是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長時間興趣盎然地投入到集合關(guān)系的學(xué)習(xí)中呢?我在整個教學(xué)過程中層層設(shè)問,不斷地向?qū)W生提出挑戰(zhàn),以激發(fā)學(xué)生的學(xué)習(xí)興趣。在引入的環(huán)節(jié),我設(shè)計(jì)了下面的問題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數(shù)與數(shù)之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎(chǔ)上提出這一節(jié)課我們來共同探討集合之間的基本關(guān)系。(板書課題)

      2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問題情境1的探究:

      具體實(shí)例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};

      此環(huán)節(jié)設(shè)置了三個具體實(shí)例,包含了有限集、無限集、數(shù)集(包括不等式)、圖形的集合。第一個例子為有限集數(shù)集,最為簡單直觀,對學(xué)生初步認(rèn)識子集,理解子集的概念很有幫助;第二個例子是圖形集合且是無限集,需要通過探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個例子是無限數(shù)集,基于學(xué)生初中階段已經(jīng)學(xué)習(xí)了用數(shù)軸表示不等式的解集,啟發(fā)學(xué)生可以通過數(shù)形結(jié)合的方式來研究集合之間的關(guān)系,從而引出Venn圖。對第一個例子,借助多媒體演示動畫,幫助學(xué)生體會“任意”性。使學(xué)生在經(jīng)歷直觀感知、觀察發(fā)現(xiàn)的基礎(chǔ)上建構(gòu)子集的概念,并且我在教學(xué)的過程中特別注重讓學(xué)生說,借此來學(xué)習(xí)運(yùn)用集合語言進(jìn)行交流,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果我都給予積極的評價。

      3、概念的剖析

      (1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,

      (2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。

      這里引入了許多新的符號,對初學(xué)者來說容易混淆,是一個易錯點(diǎn),因此我在這里設(shè)置了一個填空小練習(xí):

      0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1

      并引導(dǎo)學(xué)生類比數(shù)與數(shù)之間的“≤”“≥”符號來記憶“?”“?”符號。

      4、概念的深化——集合的相等與真子集

      問題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個元素,它與集合A之間又可能是什么關(guān)系呢?

    高中數(shù)學(xué)說課稿12

      一、背景分析

      1、學(xué)習(xí)任務(wù)分析:充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一,它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。

      教學(xué)重點(diǎn):充分條件、必要條件和充要條件三個概念的定義。

      2、學(xué)生情況分析:從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.因此,新教材在第一章的小結(jié)與復(fù)習(xí)中,把學(xué)生的學(xué)習(xí)要求規(guī)定為“初步掌握充要條件”(注意:新教學(xué)大綱的教學(xué)目標(biāo)是“掌握充要條件的意義”),這是比較切合教學(xué)實(shí)際的.由此可見,教師在充要條件這一內(nèi)容的新授教學(xué)時,不可拔高要求追求一步到位,而要在今后的教學(xué)中滾動式逐步深化,使之與學(xué)生的知識結(jié)構(gòu)同步發(fā)展完善。

      教學(xué)難點(diǎn):“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).根據(jù)多年教學(xué)實(shí)踐,學(xué)生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結(jié)論,怎么又變成條件了呢?對這學(xué)生難于理解。

      教學(xué)關(guān)鍵:找出A、B,根據(jù)定義判斷A=B與B=A是否成立。教學(xué)中,要強(qiáng)調(diào)先找出A、B,否則,學(xué)生可能會對必要條件難以理解。

      二、教學(xué)目標(biāo)設(shè)計(jì):

      (一)知識目標(biāo):

      1、正確理解充分條件、必要條件、充要條件三個概念。

      2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關(guān)系。

      (二)能力目標(biāo):

      1、培養(yǎng)學(xué)生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。

      2、培養(yǎng)學(xué)生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進(jìn)行歸納,總結(jié)出一般規(guī)律。

      (三)情感目標(biāo):

      1、通過以學(xué)生為主體的教學(xué)方法,讓學(xué)生自己構(gòu)造數(shù)學(xué)命題,發(fā)展體驗(yàn)獲取知識的感受。

      2、通過對命題的四種形式及充分條件,必要條件的相對性,培養(yǎng)同學(xué)們的辯證唯物主義觀點(diǎn)。

      3、通過“會觀察”,“敢歸納”,“善建構(gòu)”,培養(yǎng)學(xué)生自主學(xué)習(xí),勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點(diǎn)暴露出來,并在問題面前表現(xiàn)出濃厚的興趣和不畏困難、勇于進(jìn)取的精神。

      三、教學(xué)結(jié)構(gòu)設(shè)計(jì):

      數(shù)學(xué)知識來源于生活實(shí)際,生活本身又是一個巨大的數(shù)學(xué)課堂,我在教學(xué)過程中注重把教材內(nèi)容與生活實(shí)踐結(jié)合起來,加強(qiáng)數(shù)學(xué)教學(xué)的實(shí)踐性,給數(shù)學(xué)找到生活的原型。我對本節(jié)課的數(shù)學(xué)知識結(jié)構(gòu)進(jìn)行創(chuàng)造性地“教學(xué)加工”,在教學(xué)方法上采用了“合作——探索”的開放式教學(xué)模式,使課堂教學(xué)體現(xiàn)“參與式”、“生活化”、“探索性”,保證學(xué)生對數(shù)學(xué)知識的主動獲取,促進(jìn)學(xué)生充分、和諧、自主、個性化的發(fā)展。

      整體思路為:教師創(chuàng)設(shè)情境,激發(fā)興趣,引出課題 引導(dǎo)學(xué)生分析實(shí)例,給出定義 例題分析(采用開放式教學(xué)) 知識小結(jié) 擴(kuò)展例題 練習(xí)反饋

      整個教學(xué)設(shè)計(jì)的主要特色:

      (1)由生活事例引出課題;

      (2)采用開放式教學(xué)模式;

      (3)擴(kuò)展例題是分析生活中的名言名句,又將數(shù)學(xué)融入生活中。

      努力做到:“教為不教,學(xué)為會學(xué)”;要“授之以魚”更要“授之以漁”。

      四、教學(xué)媒體設(shè)計(jì):

      本節(jié)課是概念課,要避免單一的下定義作練習(xí)模式,應(yīng)該努力使課堂元素更為豐富。這節(jié)課,我借助了多媒體課件,配合教學(xué),添加了一些與例題相匹配的圖片背景,以激發(fā)學(xué)生的學(xué)習(xí)興趣,另外將學(xué)生的自編題利用多媒體課件展示出來分析,提高了課堂教學(xué)的效率。

      五、教學(xué)過程設(shè)計(jì):

      第一,創(chuàng)設(shè)情境,激發(fā)興趣,引出課題:

      考慮到高一學(xué)生學(xué)習(xí)這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學(xué)生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。

      我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業(yè)員應(yīng)該買多少?他說買3米足夠了。”這樣,就產(chǎn)生了“3米布料”與“做一件襯衫夠不夠”的關(guān)系。用這個事件目的是為了第二部分引導(dǎo)學(xué)生得出充分條件的定義。這里要強(qiáng)調(diào)該事件包括:A:有3米布料;B:做一件襯衫夠了。

      第二個事例是:“一人病重,呼吸困難,急診住院接氧氣。”就產(chǎn)生了“氧氣”與“活命與否”的關(guān)系。用這個事件的目的是為了第二部分引導(dǎo)學(xué)生得出必要條件的定義。這里要強(qiáng)調(diào)該事件包括:A:接氧氣;B:活了。

      用以上兩個生活中的事例來說明數(shù)學(xué)中應(yīng)研究的概念、關(guān)系,會使學(xué)生感到親切自然,有助于提高興趣和深入領(lǐng)會概念的內(nèi)容,特別是它的必要性。

      第二,引導(dǎo)學(xué)生分析實(shí)例,給出定義。

      在第一部分激發(fā)起學(xué)生的學(xué)習(xí)興趣后,緊接著開展第二部分,引導(dǎo)學(xué)生分析實(shí)例,讓學(xué)生從事例中抽象出數(shù)學(xué)概念,得出本節(jié)課所要學(xué)習(xí)的充分條件和必要條件的定義。在引導(dǎo)過程中盡量放慢語速,結(jié)合事例幫助學(xué)生分析。

      得出定義之后,這里有必要再利用本課前面兩節(jié)的“邏輯聯(lián)結(jié)詞”和“四種命題”的知識來加強(qiáng)對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。

      還應(yīng)指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學(xué)生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。

      當(dāng)兩個定義分別給出后,我又對它們之間的區(qū)別加以分析說明,(充分條件可能會有多余,浪費(fèi),必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學(xué)生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認(rèn)識,第三部分再利用具體的數(shù)學(xué)事例來強(qiáng)化。

    高中數(shù)學(xué)說課稿13

      教學(xué)目標(biāo)

      A、知識目標(biāo):

      掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。

      B、能力目標(biāo):

      (1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

      (2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。

      (3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。

      C、情感目標(biāo):(數(shù)學(xué)文化價值)

      (1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。

      (2)通過公式的運(yùn)用,樹立學(xué)生"大眾教學(xué)"的思想意識。

      (3)通過生動具體的現(xiàn)實(shí)問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗(yàn),產(chǎn)生熱愛數(shù)學(xué)的情感。

      教學(xué)重點(diǎn):

      等差數(shù)列前n項(xiàng)和的公式。

      教學(xué)難點(diǎn):

      等差數(shù)列前n項(xiàng)和的公式的靈活運(yùn)用。

      教學(xué)方法

      啟發(fā)、討論、引導(dǎo)式。

      教具:

      現(xiàn)代教育多媒體技術(shù)。

      教學(xué)過程

      一、創(chuàng)設(shè)情景,導(dǎo)入新課。

      師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項(xiàng)公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的前n項(xiàng)和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時,一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計(jì)算出來的呢?如果大家也懂得那樣巧妙計(jì)算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

      例1,計(jì)算:1+2+3+4+5+6+7+8+9+10。

      這道題除了累加計(jì)算以外,還有沒有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。

      生1:因?yàn)?+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

      生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

      上面兩式相加得2S=11+10+。。。。。。+11=10×11=110

      10個

      所以我們得到S=55,

      即1+2+3+4+5+6+7+8+9+10=55

      師:高斯神速計(jì)算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類似。

      理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個性質(zhì)呢?

      生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。

      二、教授新課(嘗試推導(dǎo))

      師:如果已知等差數(shù)列的首項(xiàng)a1,項(xiàng)數(shù)為n,第n項(xiàng)an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項(xiàng)和Sn計(jì)算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請一位學(xué)生板演。

      生4:Sn=a1+a2+。。。。。。an—1+an也可寫成

      Sn=an+an—1+。。。。。。a2+a1

      兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

      n個

      =n(a1+an)

      所以Sn=(I)

      師:好!如果已知等差數(shù)列的首項(xiàng)為a1,公差為d,項(xiàng)數(shù)為n,則an=a1+(n—1)d代入公式(1)得

      Sn=na1+ d(II)

      上面(I)、(II)兩個式子稱為等差數(shù)列的前n項(xiàng)和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項(xiàng)a1,下底是第n項(xiàng)an,高是項(xiàng)數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。

      三、公式的應(yīng)用(通過實(shí)例演練,形成技能)。

      1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計(jì)算:

      (1)1+2+3+。。。。。。+n

      (2)1+3+5+。。。。。。+(2n—1)

      (3)2+4+6+。。。。。。+2n

      (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

      請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。

      生5:直接利用等差數(shù)列求和公式(I),得

      (1)1+2+3+。。。。。。+n=

      (2)1+3+5+。。。。。。+(2n—1)=

      (3)2+4+6+。。。。。。+2n==n(n+1)

      師:第(4)小題數(shù)列共有幾項(xiàng)?是否為等差數(shù)列?能否直接運(yùn)用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。

      生6:(4)中的數(shù)列共有2n項(xiàng),不是等差數(shù)列,但把正項(xiàng)和負(fù)項(xiàng)分開,可看成兩個等差數(shù)列,所以

      原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

      =n2—n(n+1)=—n

      生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項(xiàng)結(jié)合都為—1,故可得另一解法:

      原式=—1—1—。。。。。。—1=—n

      n個

      師:很好!在解題時我們應(yīng)仔細(xì)觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運(yùn)用Sn公式時,要看清等差數(shù)列的項(xiàng)數(shù),否則會引起錯解。

      例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

      生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

      又∵d=—2,∴a1=6

      ∴S12=12 a1+66×(—2)=—60

      生9:(2)由a1+a2+a3=12,a1+d=4

      a8+a9+a10=75,a1+8d=25

      解得a1=1,d=3 ∴S10=10a1+=145

      師:通過上面例題我們掌握了等差數(shù)列前n項(xiàng)和的公式。在Sn公式有5個變量。已知三個變量,可利用構(gòu)造方程或方程組求另外兩個變量(知三求二),請同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。

      師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編)

      ①數(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

      ②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導(dǎo)學(xué)生運(yùn)用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。

      2、用整體觀點(diǎn)認(rèn)識Sn公式。

      例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)

      師:來看第(1)小題,寫出的計(jì)算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?

      生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

      師:對!(簡單小結(jié))這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學(xué)問題的體現(xiàn)。

      師:由于時間關(guān)系,我們對等差數(shù)列前n項(xiàng)和公式Sn的運(yùn)用一一剖析,引導(dǎo)學(xué)生觀察當(dāng)d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點(diǎn)如何來認(rèn)識Sn公式后,這留給同學(xué)們課外繼續(xù)思考。

      最后請大家課外思考Sn公式(1)的逆命題:

      已知數(shù)列{an}的前n項(xiàng)和為Sn,若對于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說明理由。

      四、小結(jié)與作業(yè)。

      師:接下來請同學(xué)們一起來小結(jié)本節(jié)課所講的內(nèi)容。

      生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項(xiàng)和公式。

      2、用所推導(dǎo)的兩個公式解決有關(guān)例題,熟悉對Sn公式的運(yùn)用。

      生12:1、運(yùn)用Sn公式要注意此等差數(shù)列的項(xiàng)數(shù)n的值。

      2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

      3、當(dāng)已知條件不足以求此項(xiàng)a1和公差d時,要認(rèn)真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。

      師:通過以上幾例,說明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時希望大家在學(xué)習(xí)中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學(xué)習(xí)。

      本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。

      數(shù)學(xué)思想:類比思想、整體思想、方程思想、函數(shù)思想等。

      作業(yè):P49:13、14、15、17

    高中數(shù)學(xué)說課稿14

      各位老師:

      大家好!

      我叫***,來自**。我說課的題目是《簡單隨機(jī)抽樣》,內(nèi)容選自于新課程人教A版必修3第二章第一節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、和教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):

      一、教材分析

      1.教材所處的地位和作用

      "簡單隨機(jī)抽樣"是"隨機(jī)抽樣"的基礎(chǔ),"隨機(jī)抽樣"又是"統(tǒng)計(jì)學(xué)"的基礎(chǔ),因此,在"統(tǒng)計(jì)學(xué)"中,"簡單隨機(jī)抽樣"是基礎(chǔ)的基礎(chǔ)。在初中學(xué)生已學(xué)過相關(guān)概念,如"抽樣""總體"、"個體"、"樣本"、"樣本容量"等,具有一定基礎(chǔ),新教材把"統(tǒng)計(jì)"這部分內(nèi)容編入必修部分,突出了統(tǒng)計(jì)在日常生活中的應(yīng)用,體現(xiàn)它在中學(xué)數(shù)學(xué)中的地位,但同時也給學(xué)生學(xué)習(xí)增加了難度。

      2教學(xué)的重點(diǎn)和難點(diǎn)

      重點(diǎn):掌握簡單隨機(jī)抽樣常見的兩種方法(抽簽法、隨機(jī)數(shù)表法)

      難點(diǎn):理解簡單隨機(jī)抽樣的科學(xué)性,以及由此推斷結(jié)論的可靠性

      二、教學(xué)目標(biāo)分析

      1.知識與技能目標(biāo):

      正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;

      2.過程與方法目標(biāo):

      (1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價值的統(tǒng)計(jì)問題;

      (2)在解決統(tǒng)計(jì)問題的過程中,學(xué)會用簡單隨機(jī)抽樣的方法從總體中抽取樣本。

      3.情感,態(tài)度和價值觀目標(biāo)

      通過對現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問題的提出,體會數(shù)學(xué)知識與現(xiàn)實(shí)世界及各學(xué)科知識之間的聯(lián)系,認(rèn)識數(shù)學(xué)的重要性

      三、教學(xué)方法與手段分析

      為了充分讓學(xué)生自己分析、判斷、自主學(xué)習(xí)、合作交流。因此,我采用討論發(fā)現(xiàn)法教學(xué),并對學(xué)生滲透"從特殊到一般"的學(xué)習(xí)方法,由于本節(jié)課內(nèi)容實(shí)例多,信息容量大,文字多,我采用多媒體輔助教學(xué),節(jié)省時間,提高教學(xué)效率,另外采用這種形式也可強(qiáng)化學(xué)生感觀刺激,也能大大提高學(xué)生的學(xué)習(xí)興趣。

      四、教學(xué)過程分析

      (一)設(shè)置情境,提出問題

      例1:請問下列調(diào)查是"普查"還是"抽樣"調(diào)查?

      A、一鍋水餃的味道B、旅客上飛機(jī)前的安全檢查

      c、一批炮彈的殺傷半徑D、一批彩電的質(zhì)量情況

      E、美國總統(tǒng)的民意支持率

      學(xué)生討論后,教師指出生活中處處有"抽樣"

      「設(shè)計(jì)意圖」生活中處處有"抽樣"調(diào)查,明確學(xué)習(xí)"抽樣"的必要性。

      (二)主動探究,構(gòu)建新知

      例2:語文老師為了了解某班同學(xué)對某首詩的背誦情況,應(yīng)采用下列哪種抽查方式?為什么?

      A、在班級12名班委名單中逐個抽查5位同學(xué)進(jìn)行背誦

      B、在班級45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦

      先讓學(xué)生分析、選擇B后,師生一起歸納其特征:

      (1)不放回逐一抽樣,

      (2)抽樣有代表性(個體被抽到可能性相等),學(xué)生體驗(yàn)B種抽樣的科學(xué)性后,教師指出這是簡單隨機(jī)抽樣,并復(fù)習(xí)初中講過的有關(guān)概念,最后教師補(bǔ)充板書課題--(簡單隨機(jī))抽樣及其定義。

      「設(shè)計(jì)意圖」例2從正面分析簡單隨機(jī)抽樣的科學(xué)性、公平性,突出"等可能性"特征。這是突破教學(xué)難點(diǎn)的重要環(huán)節(jié)之一。

      例3我們班有44名學(xué)生,現(xiàn)從中抽出5名學(xué)生去參加學(xué)生座談會,要使每名學(xué)生的機(jī)會均等,我們應(yīng)該怎么做?談?wù)勀愕南敕ā?/p>

      先讓學(xué)生獨(dú)立思考,然后分小組合作學(xué)習(xí),最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納"抽簽法"步驟:

      (1)編號制簽

      (2)攪拌均勻

      (3)逐個不放回抽取n次。教師板書上面步驟。

      「設(shè)計(jì)意圖」在自主探究,合作交流中構(gòu)建新知,體驗(yàn)"抽簽法"的公平性,從而突破難點(diǎn),突出重點(diǎn)。

      請一位同學(xué)說說例2采用"抽簽法"的實(shí)施步驟。

      「設(shè)計(jì)意圖」

      1、反饋練習(xí),落實(shí)知識點(diǎn),突出重點(diǎn)。

      2、體會"抽簽法"具有"簡單、易行"的優(yōu)點(diǎn)。

      〈屏幕出示〉

      例4、假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn)

      提問:這道題適合用抽簽法嗎?

      讓學(xué)生進(jìn)行思考,分析抽簽法的局限性,從而引入隨機(jī)數(shù)表法。教師出示一份隨機(jī)數(shù)表,并介紹隨機(jī)數(shù)表,強(qiáng)調(diào)數(shù)表上的數(shù)字都是隨機(jī)的,各個數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學(xué)生討論隨機(jī)數(shù)表法的步驟,最后師生一起歸納步驟:

      (1)編號

      (2)在隨機(jī)數(shù)表上確定起始位置

      (3)取數(shù)。教師板書上面步驟。

      請一位同學(xué)說說例2采用"隨機(jī)數(shù)表法"的實(shí)施步驟。

      「設(shè)計(jì)意圖」

      1、體會隨機(jī)數(shù)表法的科學(xué)性

      2、體會隨機(jī)數(shù)表法的優(yōu)越性:避免制簽、攪拌。

      3、反饋練習(xí),落實(shí)知識點(diǎn),突出重點(diǎn)。

      ㈢課堂小結(jié):

      1.簡單隨機(jī)抽樣及其兩種方法

      2.兩種方法的操作步驟

      (采用問答形式)

      「設(shè)計(jì)意圖」通過小結(jié)使學(xué)生們對知識有一個系統(tǒng)的認(rèn)識,突出重點(diǎn),抓住關(guān)鍵,培養(yǎng)概括能力。

      ㈣布置作業(yè)

      課本練習(xí)2、3

      [設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

    高中數(shù)學(xué)說課稿15

      一、說教材:

      1、地位、作用和特點(diǎn):

      《 》是高中數(shù)學(xué)課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學(xué)課本說課稿。

      本節(jié)是在學(xué)習(xí)了 之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對 的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí) 打下基礎(chǔ),所以

      是本章的重要內(nèi)容。此外,《 》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學(xué)研究 有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。本節(jié)的特點(diǎn)之一是

      特點(diǎn)之二是: 。

      教學(xué)目標(biāo):

      根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

      (1)知識目標(biāo):A、B、C

      (2)能力目標(biāo):A、B、C

      (3)德育目標(biāo):A、B

      教學(xué)的重點(diǎn)和難點(diǎn):

      (1)教學(xué)重點(diǎn):

      (2)教學(xué)難點(diǎn):

      二、說教法:

      基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實(shí)際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學(xué)生充分的時間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計(jì)如下教學(xué)程序:

      導(dǎo)入新課 新課教學(xué)

      反饋發(fā)展

      三、說學(xué)法:

      學(xué)生學(xué)習(xí)的過程實(shí)際上就是學(xué)生主動獲取、整理、貯存、運(yùn)用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個方面的學(xué)法指導(dǎo)。

      1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。

      本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出 ,并依

      據(jù)此知識與具體事例結(jié)合、推導(dǎo)出 ,這正是一個分析和推理的全過程。

      2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過程。 主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授 時,可通過

      演示,創(chuàng)設(shè)探索 規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來的特點(diǎn)。

      3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實(shí)踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時總結(jié)和推廣。

      4、在指導(dǎo)學(xué)生解決問題時,引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

      四、教學(xué)過程:

      (一)、課題引入:

      教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實(shí)驗(yàn)。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例,教案《高中數(shù)學(xué)課本說課稿》。C、講述數(shù)學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。

      (二)、新課教學(xué):

      1、針對上面提出的問題,設(shè)計(jì)學(xué)生動手實(shí)踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。

      2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時在設(shè)計(jì)上最好是有對比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

      (三)、實(shí)施反饋:

      1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

      2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

      五、板書設(shè)計(jì):

      在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫在左側(cè),中間知識推導(dǎo)過程,右邊實(shí)例應(yīng)用。

      六、說課綜述:

      以上是我對《 》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計(jì)。在整個課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的 知識,并把它運(yùn)用到對

      的認(rèn)識,使學(xué)生的認(rèn)知活動逐步深化,既掌握了知識,又學(xué)會了方法。

      總之,對課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。

    【高中數(shù)學(xué)說課稿】相關(guān)文章:

    高中數(shù)學(xué)的說課稿11-04

    高中數(shù)學(xué)經(jīng)典說課稿范文06-24

    高中數(shù)學(xué)全套說課稿12-05

    高中數(shù)學(xué)的優(yōu)秀說課稿12-04

    高中數(shù)學(xué)全部說課稿12-04

    高中數(shù)學(xué)實(shí)驗(yàn)說課稿11-26

    高中數(shù)學(xué)必修說課稿11-25

    高中數(shù)學(xué)函數(shù)的說課稿11-17

    高中數(shù)學(xué)面試說課稿11-18

    高中數(shù)學(xué)集合說課稿11-12

    91久久大香伊蕉在人线_国产综合色产在线观看_欧美亚洲人成网站在线观看_亚洲第一无码精品立川理惠

      亚洲国产精品看片在线观看 | 先锋成在线人资源视频 | 亚洲一区精品动态图 | 日本一区二区三区四区在线观看 | 中文字幕v亚洲日本 | 亚洲精品理论国产电影 |